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Abstract 1 

Different people listening to the same story may converge upon a largely shared interpretation 2 

while still developing idiosyncratic experiences atop that shared foundation. What semantic 3 

properties support this individualized experience of natural language? Here, we investigate how 4 

the “concreteness” of word meanings — i.e., the extent to which a concept is derived from 5 

sensory experience — relates to variability in the neural representations of language. Leveraging 6 

a large dataset of participants who each listened to four auditory stories while undergoing 7 

functional MRI, we demonstrate that an individual’s neural representations of concrete concepts 8 

are reliable across stories and unique to the individual. In contrast, we find that neural 9 

representations of abstract concepts are variable both within individuals and across the 10 

population. Using natural language processing tools, we show that concrete words exhibit similar 11 

neural signatures despite spanning larger distances within a high-dimensional semantic space, 12 

which potentially reflects an underlying signature of sensory experience — namely, imageability 13 

— shared by concrete words but absent from abstract words. Our findings situate the concrete-14 

abstract semantic axis as a core dimension that supports reliable yet individualized 15 

representations of natural language. 16 

   17 
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Introduction 18 

The success of language as a means of communication relies on a shared understanding of the 19 

meanings of words as links to mental concepts1–3. While there is generally strong convergence in 20 

how people understand and represent language4,5, the conceptual associations evoked by a given 21 

word can also be highly individualized and informed by experience6,7. What semantic properties 22 

scaffold common conceptual knowledge while also providing the foundation for idiosyncratic 23 

representations?  24 

 25 

A large body of empirical and theoretical work has suggested that human knowledge is organized 26 

along an axis that moves from concrete, sensory-based representations to abstract, language-27 

derived representations8–11. These theories propose that concrete concepts benefit from being 28 

represented across both sensory and linguistic domains and, as a result, exhibit more stable 29 

representations than abstract concepts. Recent findings from human neuroimaging support 30 

these theories, demonstrating close topographical and functional correspondence between 31 

representations of sensory and linguistic information12–14. Furthermore, neural representations 32 

of concrete concepts are less variable across subjects than representations of abstract 33 

concepts15–17. In turn, the stability of concrete concept representations is suggested to benefit 34 

behavior: concrete words are processed faster16,18–20, are more imageable21,22, and are more 35 

easily recalled than abstract words23–27. While these studies suggest population-level 36 

commonalities in how people process and represent the concrete-abstract axis, the extent to 37 

which these representations are colored by individual experience remains unclear. 38 

 39 
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More recently, language researchers have demonstrated differences in how individuals organize 40 

and represent word meanings17, finding that concrete words demonstrate greater similarity 41 

across subjects than abstract words, in both conceptual organization (as measured behaviorally 42 

with a semantic distance task) and neural representation. This result further suggests that 43 

representations become more consistent across subjects as words become more concrete and 44 

more variable as words become more abstract. However, the low similarity of abstract word 45 

representations across subjects could stem from multiple causes (Figure 1C). On one hand, 46 

representations of abstract words might be highly individualized—in other words, unique and 47 

colored by an individual’s experiences. Such individual-specific representations would be 48 

evidenced by high within-subject similarity across repeated exposures to the same word or 49 

concept, despite low across-subject similarity. Another possibility is that low similarity results 50 

from unstable representations of abstract words. In this case, representations would show low 51 

similarity both within and across subjects that could result from high variability in the meaning 52 

of abstract words across contexts. Yet, without evaluating the reliability of representations within 53 

subjects, the low similarity of abstract word representations across subjects is difficult to 54 

interpret. 55 
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 56 

Here, we aimed to understand how the concrete-abstract axis provides a foundation for 57 

individual differences in the neural representation of language. We investigated this question 58 

within a large dataset of subjects who listened to four naturalistic auditory stories during 59 

functional magnetic resonance imaging (fMRI) scanning. Unlike many previous investigations that 60 

used isolated single-word or otherwise simplified paradigms15–17,28–32, these data allowed us to 61 

characterize neural representations of concrete and abstract words as they occur in 62 

contextualized speech, as language is used in everyday life33. We tested not only the extent to 63 

Figure 1. Experimental methods. (a) 45 subjects listened to four auditory stories during fMRI scanning (Nastase et al., 2021). (b) 
Human ratings were used to assign a value of concreteness (i.e., position along the concrete-abstract axis) for as many words as 
possible within each story. This process was repeated with other semantic properties including frequency, valence, and arousal. 
(c) Any apparent variation across subjects in neural representations of linguistic properties could stem from two possible 
underlying patterns: neural representations could be reliably idiosyncratic within subjects, evidenced by high similarity of 
representations within the same subject across distinct experiences (here, stories), or these representations could be unstable 
both within and across subjects, evidenced by variability within the same subject across stories. (d) For each story, voxel-wise 
beta values were estimated for each linguistic property within a generalized linear model. Then, within each of 200 parcels 
(Schaefer parcellation), beta values were correlated between all subjects for each pair of stories, and story similarity matrices 
were averaged across all pairs of stories. From these average similarity matrices, we estimate two indices of within-subject 
stability of neural representations: 1) reliability, defined as the difference between within-subject and average across-subject 
similarity, and 2) identifiability, defined as the fingerprinting accuracy of discriminating one subject from all other subjects based 
on their neural representations. 
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which neural representations of concrete and abstract words are consistent across a group of 64 

subjects, but also the degree to which these representations are reliable within and unique to a 65 

given subject across stories. Then, by leveraging tools from natural language processing, we 66 

examined how the organization of words within a high-dimensional semantic space promotes 67 

differential reliability of neural representations of concrete and abstract words. 68 

Methods 69 

Participants 70 
 71 

We used data from 45 subjects (N=33 female; mean age 23.3 +/- 7.4 years) from the publicly 72 

available Narratives dataset34 who listened to four auditory stories (“Running from the Bronx”, 73 

8:56 min; “Pie Man (PNI)”, 6:40 min; “I Knew You Were Black”, 13:20 min; “The Man Who Forgot 74 

Ray Bradbury”, 13:57 min) during fMRI scans at the Princeton Neuroscience Institute (Figure 1A). 75 

All stories were collected within the same testing session and each story was collected within a 76 

separate run. Across participants, the order of stories was pseudo-randomized such that “Bronx” 77 

and “Pie Man (PNI)” were always presented in the first half of the session while “Black” and 78 

“Forgot” were presented in the second half of the session. The order of the stories presented 79 

within each half of the session was then randomized, resulting in four possible presentation 80 

orders across participants. All participants completed written informed consent, were screened 81 

for MRI safety and reported fluency in English, having normal hearing, and no history of 82 

neurological disorders. The study was approved by the Princeton University Institutional Review 83 

Board. 84 

 85 
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MRI data acquisition and preprocessing 86 
 87 

Functional and anatomical images were collected on a 3T Siemens Magnetom Prisma with a 64-88 

channel head coil. Whole-brain images were acquired (48 slices per volume, 2.5mm isotropic 89 

resolution) in an interleaved fashion using a gradient-echo EPI (repetition time (TR) = 1.5s, echo 90 

time (TE) = 31ms, flip angle (FA) = 67°) with a multiband acceleration factor of 3 and no in-plane 91 

acceleration. A total of 1717 volumes were collected for each participant across four separate 92 

scan runs, where a single story was presented within each run. 93 

 94 

We used preprocessed data provided by Nastase et al., 2021. In brief, data were preprocessed 95 

using fMRIPrep35 including co-registration, slice-time correction, and non-linear alignment to the 96 

MNI152 template brain. Time-series were detrended with regressors for motion, white matter, 97 

cerebrospinal fluid and smoothed with a 6mm FWHM gaussian kernel. For more information 98 

about data acquisition and preprocessing, please refer to Nastase et al., 2021.  99 

 100 

As an additional preprocessing step, we performed functional alignment on these data using a 101 

shared response model36 as implemented in BrainIAK37. Previous work has demonstrated better 102 

functional alignment by fitting a SRM within each parcel38. Accordingly, we restricted our 103 

analyses to the neocortex and used the 200-parcel, 17-network Schaefer parcellation39 and 104 

removed any parcel without at least 75% coverage across all participants and stories (total 105 

parcels removed: 9/200, or 4.5%). Within each remaining parcel, we then fit a model to capture 106 

reliable responses to all stories across participants in a lower dimensional feature space (number 107 
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of features = 50). We then inverted the parcel-wise models to reconstruct the individual voxel-108 

wise time courses for each participant and each story40. This procedure served as an additional 109 

denoising step to improve the consistency of stimulus-driven spatiotemporal patterns across 110 

participants. All analyses were conducted in volume space and projected to surface space for 111 

visualization purposes only. 112 

 113 

Stimulus preprocessing 114 
 115 

Each story was originally transcribed and aligned to the audio file using the Gentle forced-116 

alignment algorithm by the authors of Nastase et al., 2021. We applied additional preprocessing 117 

to the transcripts using the Natural Language Toolkit41. First, we obtained parts-of-speech and 118 

word lemmas — the base form of a word (e.g., “go” is the lemma for “going”, “gone” and “went”) 119 

— for each word, and excluded stop-words (uninformative, common words) such as “the”, “a”, 120 

and “is”. 121 

 122 

To address our hypotheses, we leveraged an existing corpus of human ratings of word 123 

concreteness42. In this study, online participants rated a total of 40,000 English word lemmas on 124 

a 5-point Likert scale from abstract (lower) to concrete (higher). Each word was rated by at least 125 

25 participants. Participants were instructed to consider a word as more concrete if it refers to 126 

something that exists in reality and can be experienced directly through senses or actions, and, 127 

in contrast, to consider a word as more abstract if its meaning is dependent on language and 128 

cannot be experienced directly through senses or actions. Henceforth, we use “concrete-abstract 129 
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axis” to refer to this general semantic dimension, and “concreteness” as a word’s specific position 130 

on this axis. 131 

 132 

For each word in each story, we assigned a value of concreteness using the average human rating 133 

for that word’s lemma if it was present in the concreteness corpus (Figure 1B). In addition to our 134 

critical predictor (concreteness), we included three other semantic properties as controls: 135 

frequency43,44, a measure of how often a word occurs in language, and two affective properties, 136 

valence and arousal45. Word frequency was derived objectively by calculating the number of 137 

occurrences of a word per million words (51 million total words), while valence and arousal were 138 

derived from human ratings analogous to the concreteness ratings described above. Previous 139 

research investigating word frequency effects have demonstrated that less frequent words drive 140 

stronger neural responses within the language network46,47. A separate set of studies 141 

investigating affect have demonstrated that valence and arousal contribute to representations 142 

of language within areas related to emotion processing and memory48,49. While the selected 143 

control semantic properties are not a definitive list, including them as “competition” allows us to 144 

make inferences that are more specific to the concrete-abstract axis. Our analysis was then 145 

constrained to the set of words with a value for any of the four properties (i.e., the union), 146 

resulting in 93% of content words sampled on average across stories.  147 

 148 

fMRI Analysis 149 
 150 
Modeling representations of semantic properties 151 
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 152 

For each story and participant, we used a general linear model (GLM) to estimate BOLD responses 153 

for each semantic property (concreteness, frequency, valence, arousal), plus a low-level auditory 154 

feature regressor (loudness: the root mean square of the auditory waveform). We collectively 155 

refer to these semantic and auditory properties as “linguistic properties”. Specifically, to 156 

construct a continuous, amplitude-modulated regressor, each linguistic property was assigned a 157 

value at each timepoint of the story timeseries based on the word(s) spoken at that timepoint. 158 

We then modeled these linguistic properties using AFNI50. The model yields a map of beta values 159 

that correspond to responses to each property, where higher and lower values indicate higher 160 

and lower values of a given linguistic property (e.g., higher = more concrete, lower = more 161 

abstract). As all linguistic properties were included in the same model, the resulting beta values 162 

represent the BOLD response to a given property while controlling for all other properties.  163 

 164 

Using the outputs from these models, we first examined group-level univariate responses to each 165 

linguistic property using a linear-mixed effects model. At each voxel, the model predicts BOLD 166 

activity from the fixed effects of each linguistic property plus the random effects of subject and 167 

story. The model therefore yields a map of beta values that describes consistent neural responses 168 

to each linguistic property across stories and subjects. All voxel-wise results are shown following 169 

correction for multiple comparisons (FDR q < 0.05; Figure 2). 170 

 171 

Evaluating the reliability of representations of semantic properties 172 
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 173 

Next, to understand whether semantic properties elicit reliable representations during story 174 

listening (Figure 1C), we examined the within- and across-subject multivariate pattern similarity 175 

of evoked responses for each property across stories. We divided the cortex into 200 parcels 176 

using the Schaefer parcellation39. Then, within each parcel, we correlated the voxel-wise beta 177 

values across all pairs of participants for all unique pairs of stories (six total pairs) before 178 

averaging across all story-pair matrices to obtain a subject-pairwise similarity matrix. We 179 

repeated this process for each property to understand the similarity of neural representations 180 

across stories both within- and across-subjects. See Figure 1D for a schematic of this analysis. 181 

 182 

We evaluated two multivariate signatures of these neural representations (Figure 1D). Our first 183 

method — reliability — evaluates the similarity of a subject’s representations to themselves 184 

across stories compared to the similarity of their representations to others. Specifically, reliability 185 

is calculated as the difference between the similarity of a subject to themselves (within-subject 186 

similarity) and the average pairwise similarity of a subject to all other subjects (across-subject 187 

similarity). 188 

 189 

Our second method — identifiability — measures how unique representations are to each 190 

subject. A subject is said to be identifiable based on their representations when, across stories, 191 

within-subject similarity is higher than similarity to all other participants of the group. For each 192 

parcel, we calculate identifiability as fingerprinting accuracy: the average number of participants 193 

identifiable based on their neural representations51.  194 
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 195 

For reliability analyses, statistical significance was evaluated via permutation testing (null = 196 

10,000 permutations). For identifiability analyses, statistical significance was evaluated against 197 

chance (2.22%, or 1/45, where 45 is the total number of subjects). Resulting p-values for each 198 

signature were corrected for multiple-comparisons across 200 parcels using the Benjamini-199 

Hochberg method (q < 0.05). To evaluate reliability and identifiability at a whole-brain level, for 200 

each signature, we used a linear-mixed effects model to predict reliability/identifiability from the 201 

fixed-effect of linguistic property while controlling for the random effect of parcel in both models 202 

and a random effect of subject within the reliability model. Then, to test for significant differences 203 

between linguistic properties, we conducted pairwise statistical tests between model fits to each 204 

property. We also conducted one-sample tests for both the within- and across-subject reliability 205 

for each linguistic property. All tests were two-tailed, tested at alpha p < 0.05, and corrected for 206 

multiple-comparisons using FDR correction. 207 

 208 

Disentangling the reliability of concrete and abstract word representations 209 
 210 

We next aimed to understand whether concrete and abstract words differentially drive reliability 211 

of neural representations of the concrete-abstract axis. To this end, within each story, we limited 212 

our analysis to nouns (as verbs were more prevalent at the abstract end) and dichotomized the 213 

concrete-abstract axis by selecting the top 30% of concrete and top 30% of abstract words (Figure 214 

4A). Specifically, we asked if and where concrete word representations are more reliable than 215 

abstract word representations or vice versa. 216 

 217 
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We used a GLM to estimate separate BOLD response patterns for concrete and abstract words 218 

(using regressors defined based on the top 30% of each end). Within this model, we specified 219 

concrete and abstract words as event regressors, discarding the amplitude component and 220 

treating all words of a given property as contributing equally to the model of BOLD response. We 221 

also included two amplitude-modulated regressors, word frequency and loudness, to control for 222 

differences in low-level semantic and auditory features. We then repeated our analysis of 223 

reliability (described above) on the beta maps of concrete and abstract words.  224 

 225 

For each parcel, we contrasted concrete and abstract word reliability within each subject by 226 

applying Fisher’s z-transformation and taking the difference between the reliability scores 227 

(concrete minus abstract), limiting our analysis to parcels that showed significant reliability for 228 

either concrete or abstract words. Then, within each parcel, we conducted paired t-tests to 229 

identify parcels that significantly differed in their reliability of concrete and abstract word 230 

representations. All tests were two-tailed, tested at alpha p < 0.05, and corrected for multiple-231 

comparisons using FDR correction. 232 

 233 

Evaluating the stability of concrete and abstract word representations 234 
 235 

In light of the finding that representations of concrete words are more reliable than those of 236 

abstract words (cf. Fig. 4), we asked whether this higher reliability is driven by more stable 237 

semantic relationships between words at the concrete end of the spectrum. To define semantic 238 

relationships between words, we used a natural language processing model (GloVe)52 to embed 239 

each word in both the top 30% concrete and top 30% abstract word sets, aggregated across 240 
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stories, within a high-dimensional semantic space (Figure 5A). We then applied spectral 241 

clustering53 over the concrete and abstract word embeddings to obtain concept clusters for each 242 

end of the spectrum (k=3 each for the concrete and abstract ends, so six total) composed of 243 

semantically similar words. While we selected k=3 clusters to balance the number of words in 244 

each cluster, similar results were obtained at both k=2 and k=4 clusters. These clusters grouped 245 

concrete and abstract words into sets of related concepts — such as a food-related concrete 246 

cluster containing the words “bread” and “cheese” — that were visually distinct when projected 247 

into a 2-dimensional space using UMAP54. Importantly, words within each concept cluster could 248 

come from within the same story or from different stories. 249 

 250 

In addition to visualizing the qualitative organization of concept clusters, we also formally tested 251 

the semantic similarity of words in the same or in different clusters, within and between ends of 252 

the concrete-abstract spectrum. Importantly, because the clustering itself was done on semantic 253 

distances, we expect that distances will be lower between words in the same versus different 254 

clusters, but this analysis also lets us quantify if and how semantic spread across clusters is 255 

greater at one end of the concrete-abstract axis than the other. Specifically, we calculated the 256 

cosine similarity between all pairs of words embedded within the semantic space. We then 257 

grouped these pairwise similarity values into the following categories: a) pairs of words within 258 

the same cluster, b) pairs of words in different clusters at the same end of the concrete-abstract 259 

axis (i.e., either concrete or abstract), and c) pairs of words at different ends of the concrete-260 

abstract axis, which were (by definition) in different clusters. To compare these groups of 261 

similarity values, we used a linear-mixed effects model to evaluate how end of the property 262 
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spectrum (concrete vs. abstract), cluster membership (within vs. between), and the interaction 263 

between these two features relate to the semantic similarity of cluster words while controlling 264 

for the random effect of word. To help interpret any resulting differences, we also conducted 265 

follow-up pairwise statistical tests. All tests were two-tailed, tested at alpha p < 0.05, and 266 

corrected for multiple-comparisons using FDR correction.  267 

 268 

Next, we used a GLM to estimate BOLD responses to words within each concept cluster and 269 

evaluated the similarity of neural concept-cluster representations across stories. Similar to our 270 

analysis of semantic space, we calculated a) the similarity of neural representations of the same 271 

cluster across stories, b) the similarity of neural representations of different clusters at the same 272 

end of the spectrum (e.g., concrete clusters to other concrete clusters), and c) the similarity of 273 

neural representations between concrete clusters and abstract clusters. Crucially, all analyses of 274 

cluster similarity, both within- and across-subjects, are calculated as the similarity of clusters 275 

across stories; this allowed us to evaluate the stability and uniqueness of concept-cluster 276 

representations across distinct presentations and contexts.  277 

 278 

Using two separate linear-mixed effects models, we examined how end of the property spectrum 279 

(concrete vs. abstract), cluster membership (within vs. between), and specific cluster relationship 280 

(e.g., within-concrete, between-concrete, etc.) differentially contribute to whole-brain similarity 281 

of neural representations while controlling for random effects of subject and parcel. Our first 282 

model predicts similarity from the fixed-effects of end of the property spectrum and cluster 283 

membership, and evaluates their main effects as well as their interaction. Then, in a separate 284 
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model, we predict similarity from the fixed-effect of specific cluster relationship, specifying each 285 

cluster relationship as a separate level of the fixed effect. Using this second model, we tested for 286 

significant differences between cluster relationships by conducting pairwise statistical tests. All 287 

tests were two-tailed, tested at alpha p < 0.05, and corrected for multiple-comparisons using FDR 288 

correction. 289 

Results 290 

We aimed to understand how neural representations of the concrete-abstract axis vary within 291 

individuals and across the population during naturalistic story listening. Using a large dataset of 292 

subjects (N=45) that listened to four stories each, we replicated previous findings that neural 293 

responses to the concrete-abstract axis show group-level consistency. Complementing this 294 

consistency, we also found idiosyncratic representations that were unique to individuals and 295 

stable across stories, allowing us to identify subjects with a high degree of accuracy. Furthermore, 296 

by placing words within a high-dimensional semantic space, we demonstrated that neural 297 

representations of concrete words are particularly stable and stereotyped, and that this 298 

consistency primarily drives the reliability of the concrete-abstract axis, while representations of 299 

abstract words are more variable both within and across subjects. 300 

 301 

Consistent group-level representations of the concrete-abstract axis 302 
 303 

We first sought to replicate prior work that demonstrates group-level consistency of univariate 304 

activity to concrete and abstract words. For each subject and story, we modeled brain activity as 305 

a function of the time-varying concreteness level of its content (as given by word-level norms 306 
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provided by a separate set of human raters). Our model also included time-varying regressors for 307 

other semantic properties — namely, frequency, valence, and arousal — plus loudness, a low-308 

level auditory control.  309 

 310 

All linguistic properties demonstrated neural responses consistent across both subjects and 311 

stories (Figure 2; q < 0.05). For example, loudness evoked responses in bilateral primary auditory 312 

cortex. Critically, the concrete-abstract axis evoked neural responses across a wide swath of 313 

cortex: more concrete words drove higher responses in regions including bilateral angular gyrus, 314 

bilateral parahippocampal cortex, and bilateral inferior frontal gyrus, while more abstract words 315 

drove responses in regions such as bilateral superior temporal gyrus and bilateral anterior 316 

temporal lobe. These results align with previous research that has reported similar cortical 317 

regions engaged in processing concrete and abstract concepts55,56. Importantly, all semantic 318 

properties exhibit responses that replicate prior research on word property representation: 319 

frequency modulation in the left inferior frontal gyrus47, valence representations in the right 320 

temporoparietal junction57, and arousal representations in posterior cingulate58 and 321 

ventromedial prefrontal cortex49. 322 
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 323 

Representations of the concrete-abstract axis are individually reliable 324 
 325 

Having shown that the concrete-abstract axis evokes consistent univariate activity at the group 326 

level, we next investigated the individual reliability of multivariate representations of this axis as 327 

well as other linguistic properties. We found that representations of all properties, excluding 328 

valence, exhibited within-subject reliability across stories in at least some brain regions (Figure 329 

3A; n = 10,000 permutations, p < 0.001). Importantly, while loudness showed the highest average 330 

reliability across parcels (r = 0.11) compared to the concrete-abstract axis (r = 0.09; β = 0.06, 331 

t(42967) = 44.75, p < 0.001), the concrete-abstract axis showed the second highest average 332 

reliability and was significantly more reliable than all other semantic (i.e., non-primary-sensory) 333 

properties (frequency: r = 0.04, β = 0.01, t(42967) = 8.71; valence: r = -0.002, β = 0.05, t(42967) = 334 

41.83; arousal: r = 0.02, β = 0.03, t(42967) = 23.74; all ps < 0.001).  335 

 336 

We next disentangled the separate contributions of within- and across-subject similarity in 337 

driving reliability of individual representations. In theory, high individual reliability of 338 

Figure 2. Group-level univariate activation to auditory and semantic properties of language. Across stories and subjects, 
multiple regions exhibited significant activation to the intensity of sound and word-level semantic properties including 
concreteness, prevalence, valence, and arousal. Results shown are from a single linear mixed-effects model containing fixed 
effects for all linguistic properties plus random effects for story and subject. Results are displayed at a voxel-wise false-discovery 
rate (FDR) threshold of q < 0.05. 
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representations across stories could result from 1) highly similar representations within subjects, 339 

2) highly dissimilar representations across subjects, or 3) a combination of the two. Accordingly, 340 

for each linguistic property, we computed and compared within- and across-subject similarity of 341 

representations. Across all properties with significant reliability (all linguistic properties excluding 342 

Figure 3. Within- and across-subject reliability of neural representations of linguistic properties. We compared representations 
of linguistic properties across four naturalistic stories both within and across subjects. (a) Across stories, all linguistic properties 
(excluding valence) exhibited high within-subject reliability across a wide-swatch of cortex (p < 0.05, null = 10,000 permutations, 
corrected for multiple comparisons using FDR correction). (b) While a simple auditory property, loudness, exhibited the highest 
reliability, representations of the concrete-abstract axis were more reliable than other semantic properties (frequency, valence, 
arousal). Across all linguistic properties, within-subject reliability was consistently higher than across-subject reliability. (c) 
Representations of linguistic properties enabled accurate identification of subjects across a wide swath of cortex. All plots are 
threshold at chance (2.22%). (d) Out of tested semantic properties, subjects were most identifiable from their representations of 
the concrete-abstract axis. Each dot indicates the reliability within a parcel of the Schaefer parcellation (200 total). * p < 0.05; ** 
p < 0.01; *** p < 0.001; n.s. p > 0.05. 
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valence), subjects were significantly similar to themselves (Figure 3B; one-sample t-tests, all ps < 343 

0.001) and significantly more similar to themselves than to other subjects (paired t-tests, all ps < 344 

0.001). Interestingly, by correlating within- and across-subject similarity values across parcels, we 345 

found that, at a whole-brain level, linguistic properties that demonstrated higher within-subject 346 

similarity also showed higher across-subject similarity (loudness  (r = 0.874), concrete-abstract (r 347 

= 0.784), frequency (r = 0.797), valence (r = 0.428), arousal (r = 0.599); all ps < 0.001). This finding 348 

recapitulates a seemingly paradoxical phenomenon of individual differences research previously 349 

shown in functional connectivity fingerprinting: brain states that make individuals more similar 350 

to themselves also make them more similar to others59.  351 

 352 

Individuals are identifiable from their representations of the concrete-abstract axis 353 
 354 

The previous analysis revealed that individuals’ representations of the concrete-abstract axis are 355 

reliable, but how unique are these representations? High reliability does not necessarily imply 356 

uniqueness: low average across-subject similarity could be due to high variability in across-357 

subject similarity. Specifically, select pairs of subjects may possess highly similar representations 358 

of the concrete-abstract axis, despite most of the group exhibiting low similarity. To test the 359 

extent to which linguistic property representations are unique to each individual, we evaluated 360 

our ability to identify subjects from their representations of each word property.   361 

 362 

Across cortical parcels, we were able to identify subjects from representations of both sensory 363 

response (loudness) and all four semantic properties across much of the brain (Figure 3C; null = 364 

10,000 permutations, all ps < 0.001). Of note, the average identification rates across cortical 365 
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parcels were low in an absolute sense but still significantly above chance (chance = 2.22%; Figure 366 

3D). Overall, representations of loudness provided the best ability to identify subjects (22.1%), 367 

demonstrating significantly higher identification rates, on average, than the concrete-abstract 368 

axis (16.5%; β = 10.41, t(948) = 14.77, p < 0.001). Importantly, representations of the concrete-369 

abstract axis enabled significantly higher identification accuracy than representations of other 370 

semantic properties (frequency: 8.8%, β = 2.9, t(948) = 4.11; valence: 4.4%, β = 7.24, t(948) = 371 

10.27; arousal: 6.6%, β = 5.08, t(948) = 7.2; all ps < 0.001). We then applied a winner-takes-all 372 

approach to identifiability maps to understand the cortical parcels where concrete-abstract axis 373 

representations showed the highest accuracy out of all linguistic properties. We found that the 374 

concrete-abstract axis enabled the highest identification of subjects—even higher than 375 

loudness—within regions including left anterior temporal lobe, left inferior frontal gyrus, and 376 

bilateral retrosplenial cortex (RSC). These regions dovetail with previous studies that have shown 377 

that left-lateralized language network and default mode network (DMN) are important in 378 

representing concrete and abstract concepts28,56,60–63.  379 

 380 

Concrete word representations are more reliable than abstract word representations 381 
 382 

Thus far, we have shown that representations of the concrete-abstract axis are reliable within 383 

and unique to individual subjects across experiences. Yet it remains unclear whether both 384 

concrete and abstract words contribute equally to driving the reliability of representations. On 385 

one hand, concrete words may be more reliable than abstract words because they are less 386 

sensitive to the surrounding situational context. On the other hand, abstract words may be more 387 

idiosyncratic than concrete words, as uniquely language-based representations could depend 388 
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more heavily on individual experience to create meaning. While a previous study observed that 389 

representations of abstract words exhibited lower similarity across subjects than concrete words, 390 

disentangling the source of these results necessitates 1) presenting words within naturalistic 391 

contexts and 2) evaluating similarity within subjects, across experiences. To understand the 392 

differential contributions of concrete and abstract words in driving reliability, we dichotomized 393 

the continuous, concrete-abstract axis into concrete and abstract words and estimated reliability 394 

separately for each end of the spectrum.  395 

 396 

Figure 4. Within-subject reliability of neural representations of concrete and abstract words. (a) We selected concrete and 
abstract words as the top/bottom 30% of the concrete-abstract axis and estimated neural responses to each set of words in a 
second GLM analysis. (b) While both concrete and abstract words exhibited reliable representations within subjects across 
stories, concrete words were more reliable than abstract words. p < 0.05, null = 10,000 permutations. 
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We observed that representations of concrete and abstract words each demonstrated significant 397 

reliability across stories in several brain regions (Figure 4B; null = 10,000 permutations, both ps < 398 

0.001). Contrasting the reliability maps for concrete and abstract words, we found that a large 399 

number of cortical parcels (36% or 72/200) exhibited more reliable responses to concrete words 400 

than abstract words. On the other hand, no parcels showed greater reliability of abstract word 401 

representations compared with concrete word representations. This finding suggests that 402 

concrete word representations primarily drive reliable responses of the concrete-abstract axis 403 

and extends previous, population-level findings to individual neural responses16,17,28,32,62. 404 

 405 

Stable clusters of concrete words drive reliability of representations across experiences 406 
 407 

Why might neural representations at the concrete end of the spectrum be more reliable than 408 

representations at the abstract end? While the naturalistic nature of these stimuli means that we 409 

did not necessarily have repeated presentation of the same word(s) across stories, we can use 410 

natural language processing (NLP) techniques to group words into clusters of semantically related 411 

words and use the clusters to help understand why concrete representations are more reliable, 412 

even when generalizing over individual words and concepts. Numerous recent studies have 413 

demonstrated parallels in language representation between NLP models and human neural 414 

processing13,64–67. Here, we used a word-embedding NLP model (GloVe)52 to understand how the 415 

semantic relationships among concrete and abstract words relate to the reliability of their neural 416 

representations. Specifically, we embedded concrete and abstract words within a high-417 

dimensional semantic space and clustered words based on their semantic similarity. We then 418 
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analyzed the similarity of word clusters in semantic space and, separately, the similarity of neural 419 

responses to each word cluster across stories using linear mixed-effects models (see Methods).  420 

 421 

Before evaluating neural responses to concrete and abstract word clusters, we first examined the 422 

similarity of cluster words within the semantic space. Unsurprisingly, words within the same 423 

cluster were more similar to each other than to words in different clusters (Figure 5C; , β = 0.03, 424 

t(610) = 14.71, p < 0.001), a pattern of results consistent across both concrete and abstract words 425 

(pairwise comparisons; concrete: t(306) = 10.76; abstract: t(306) = 10.03; both ps < 0.001). But 426 

we also observed a somewhat puzzling result: within semantic space, abstract words were 427 

Figure 5. Stability of concrete and abstract word representations within and across subjects. (a) We embedded and clustered 
the top 30% concrete and top 30% abstract words within a high-dimensional semantic space (GloVe). We then estimated voxel-
wise beta values for each of six clusters (3 concrete, 3 abstract) within each subject and story. Next, within each parcel (200 total), 
we correlated beta values between all sets of clusters across stories and averaged the across-story similarity of clusters. (b) 
Visualization of word embedding clusters within a 2-dimensional projection using UMAP. (c) Within semantic space, words within 
abstract clusters were more similar (i.e., less distant) than words within concrete clusters. Each dot represents the average 
similarity of a given word to other words within a given comparison. In contrast, (d) within-subject neural representations of 
concrete clusters were more similar across stories than representations of abstract clusters. Each dot indicates the average 
similarity of a subject’s concept cluster representations within a given comparison. * p < 0.05; ** p < 0.01; *** p < 0.001; n.s. p > 
0.05. 
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generally more similar to one another than concrete words were to one another (β = 0.03, t(610) 428 

= 5.87, p < 0.001). This finding was particularly surprising given the results from the previous 429 

analysis (cf. Fig 4B) that showed neural representations of concrete words to be more reliable 430 

than representations of abstract words. Why might the concrete end of the spectrum, which 431 

encompasses more variability in (i.e., spans more of) semantic space, show less variability in its 432 

neural representations?  433 

 434 

We next turned to analyze within-subject neural representations of concrete and abstract word 435 

clusters. Similar to the results in semantic space, representations of words within the same 436 

cluster were more similar across stories than representations of words in different clusters 437 

(Figure 5D; β = 0.007, t(34373) = 20.04, p < 0.001), and this was true for both the concrete and 438 

abstract ends of the spectrum (concrete z = 4.36, abstract z = 23.99,  both ps < 0.001 ). In contrast 439 

to the similarity of clusters in semantic space (Figure 5C), neural representations of concrete 440 

words exhibited greater similarity regardless of semantic distance (same or different clusters) 441 

than abstract words (β = 0.01, t(34373) = 29.45, p < 0.001). Critically, there was also an interaction 442 

such that the similarity advantage for same- over different-cluster representation was smaller for 443 

concrete than for abstract words (β = -0.005, t(34373) = -13.88, p < 0.001). Strikingly, neural 444 

representations of different concrete clusters were more similar than neural representations of 445 

the same abstract cluster (mean difference = 0.007, z = 7.12, p < 0.001). Furthermore, this pattern 446 

of results persisted when analyzing similarity across subjects (within > across: β = 0.002, t(34373) 447 

= 24.11; concrete > abstract: β = 0.001, t(34373) = 17.07; interaction: β = -0.001, t(34373) = -448 
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13.27; all ps < 0.001), suggesting that a consistent principle drives the organization of concrete 449 

and abstract neural representations both within individuals and across the population.  450 

 451 

Considered together, neural representations of distinct concrete concepts were more similar 452 

than those of distinct abstract concepts, despite concrete words spanning greater distances 453 

within semantic space than abstract words. These divergent results between the NLP model and 454 

neural data suggest that concrete words share additional properties beyond purely linguistic 455 

representations, such as imageability, that could stem from integrating visual information into 456 

the neural representations. 457 

Discussion 458 

Word meanings vary both across people and contexts, often informed by both conceptual 459 

associations specific to the individual and different situations in which the word is used. What 460 

semantic properties enable convergent conceptual knowledge while simultaneously supporting 461 

unique, individual experience? Here, we found that the concrete-abstract axis provides a basis 462 

for both population stability and individual variability in representation of natural language.  463 

 464 

Our results provide further evidence for the importance of the concrete-abstract axis in semantic 465 

representations of language. Numerous studies have demonstrated that, while both concrete 466 

and abstract words evoke responses within the language network28,30,68,69, responses to concrete 467 

words are generally stronger and longer-lasting than responses to abstract words16,31,32,70. Prior 468 

work has also shown that concrete words engage areas beyond the language network, such as 469 
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the default mode network (DMN), more than abstract words28,56,60,61,63. In our study, we found 470 

reliable representations of the concrete-abstract axis within both the language network and 471 

DMN that were unique to individual subjects across diverse, naturalistic stories. While an 472 

auditory property — loudness — exhibited the most reliable representations across stories, it is 473 

likely that this property contained additional language-related information beyond pure audition 474 

due to the presence of few other semantic properties. Critically, representations of the concrete-475 

abstract axis were more reliable than representations of other semantic axes (i.e., frequency, 476 

valence, arousal), driven primarily by the reliability of concrete word representations (as opposed 477 

to abstract word representations). Together, our results suggest that the reliability of concrete 478 

word representations may be due to engagement of areas beyond the language network, 479 

including DMN, that engage more imagery-related processes than abstract words and other 480 

semantic properties. 481 

 482 

Traditionally, neural representations of language have been probed by presenting participants 483 

with single words, sentences, and short paragraphs71,72. These studies have revealed neural 484 

territory specific to language5,73 that closely interacts with other networks involved in cognitive 485 

control and theory of mind4,74,75. In contrast to these carefully controlled experiments, everyday 486 

language is dynamic and contextualized – the meanings of words and sentences are informed by 487 

larger narrative structure33,76. It is therefore crucial to evaluate the degree to which findings of 488 

carefully-controlled studies extend to naturalistic language perception77. Within the present 489 

study, participants were presented with naturalistic auditory narratives representative of how 490 
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language is used in day-to-day life. Importantly, we found that representations of abstract words 491 

were more variable both within and across subjects than representations of concrete words.  492 

 493 

The finding of higher across-subject variability for abstract words aligns with another recent study 494 

that used a single-word paradigm17; the authors of that study interpreted this heightened 495 

variability as reflecting individual differences in meaning of abstract words in particular. 496 

However, the appeal to individual differences implies a stability of representations within the 497 

same subject over time, which was not tested. Our study differs from this previous work in two 498 

ways: first, we examined word and concept representations within subjects across repeated 499 

presentations, and second, we captured these neural representations during a naturalistic 500 

listening task that presented words in context. We found that compared to representations of 501 

concrete words, representations of abstract words and concepts were not only more variable 502 

across subjects, but also within the same individual across distinct experiences. This suggests that 503 

variability in abstract words stems less from individual differences in meaning and more from a 504 

general instability of their representations, perhaps because their meanings are more context-505 

dependent.   506 

 507 

Recent developments in natural language processing (NLP) models have provided researchers 508 

with tools to better investigate how the human brain organizes and processes natural 509 

language13,64–67. These computational models not only capture semantic relationships between 510 

words, but also contain rich knowledge regarding how words relate within various contexts78. 511 

Importantly, the contextual relationships between concrete words — that a fish and a whale may 512 
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be semantically similar in terms of “wetness” but different in terms of “size” — closely 513 

correspond to human judgements of the same categories79. Yet, within our study, we found that 514 

clusters of concrete words were less similar than clusters of abstract words within an NLP model 515 

but more similar in the human brain. This dissociation suggests that neural representations of the 516 

concrete-abstract axis contain additional information beyond pure linguistic representation. 517 

Given the close relationship between concreteness and imageability21,22, concrete words may 518 

carry a signature of imageability that results from being jointly represented across visual and 519 

linguistic domains, thereby boosting the stability of their neural representations both within and 520 

across subjects.  521 

 522 

Though our work aligns with and extends past work on the concrete-abstract access, we highlight 523 

the following limitations. First, it is possible that neural representations of other semantic axes 524 

are also idiosyncratic. In the current study, we specifically leveraged human ratings of words 525 

along semantic axes, but these behavioral ratings were collected by presenting participants with 526 

individual words out of context. Similarly, we leveraged an NLP model that does not incorporate 527 

contextual information into the word-level representations. Other semantic axes, such as valence 528 

and arousal, may be more context-dependent and require ratings specific to a given story or 529 

individual to understand the idiosyncrasies in neural representations. Second, due to the 530 

diversity of content across the auditory narratives, we were limited in our ability to compare 531 

representations of the same words across stories. We addressed this by comparing the neural 532 

representations of clusters of similar words across stories, extending prior work on single words 533 

to the organization of broader concepts in semantic space. Future work could select stories that 534 
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contain the same words but vary in narrative content to understand the stability of both specific 535 

words and semantic organization more generally across experiences. 536 

 537 

In sum, our work establishes the concrete-abstract axis as a critical dimension for promoting both 538 

shared and individualized representations of language. In particular, these findings disentangle 539 

the sources of individual variability of concrete and abstract concept representations. Our results 540 

underscore the importance of considering within-subject variability in the context of the broader 541 

population to differentiate underlying drivers of idiosyncratic processing of natural language.  542 
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