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IDIOSYNCRATIC REPRESENTATIONS OF CONCRETENESS 

Abstract 1 

Different people listening to the same story may converge upon a largely shared interpretation 2 

while still developing idiosyncratic experiences atop that shared foundation. What linguistic 3 

properties support this individualized experience of natural language? Here, we investigate how 4 

the “concrete-abstract” axis — i.e., the extent to which a word is grounded in sensory experience 5 

— relates to within- and across-subject variability in the neural representations of language. 6 

Leveraging a dataset of human participants of both sexes who each listened to four auditory 7 

stories while undergoing functional MRI, we demonstrate that neural representations of 8 

“concreteness” are both reliable across stories and relatively unique to individuals, while neural 9 

representations of “abstractness” are variable both within individuals and across the population. 10 

Using natural language processing tools, we show that concrete words exhibit similar neural 11 

representations despite spanning larger distances within a high-dimensional semantic space, 12 

which potentially reflects an underlying representational signature of sensory experience — 13 

namely, imageability — shared by concrete words but absent from abstract words. Our findings 14 

situate the concrete-abstract axis as a core dimension that supports both shared and 15 

individualized representations of natural language. 16 

  17 

  18 
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Significance Statement 19 

The meaning of spoken language is often ambiguous. As a result, people may form different 20 

interpretations despite being presented with the same information. What properties of language 21 

does the brain leverage to form this diverse, individual experience? Analyses of functional MRI 22 

data demonstrated that "concreteness", the extent to which language is related to sensory 23 

experience, evoked reliable neural patterns that were unique to individual subjects and allowed 24 

us to identify individuals solely based on their neural data. Application of machine learning 25 

methods showed that sets of concrete concepts, but not abstract concepts, show stable neural 26 

patterns, potentially due to a sensory signature: imageability. Overall, this study characterizes 27 

concreteness as a central property supporting the individualized experience of real-world 28 

language.  29 
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Introduction 30 

The success of language as a means of communication relies on a shared understanding of the 31 

meanings of words as links to mental concepts (Elman, 2004; Stolk et al., 2016; Thompson et al., 32 

2020). While people generally converge in how they understand and represent language 33 

(Fedorenko & Thompson-Schill, 2014; Malik-Moraleda et al., 2022), the conceptual associations 34 

evoked by a given word can also be highly individualized and informed by experience (Elman, 35 

2009; Yee & Thompson-Schill, 2016). What linguistic properties scaffold common conceptual 36 

knowledge while also providing the foundation for idiosyncratic representations?  37 

 38 

A large body of empirical and theoretical work has suggested that human knowledge is organized 39 

along an axis that moves from concrete, sensory-based representations to abstract, language-40 

derived representations (Bedny & Caramazza, 2011; Bi, 2021; Borghi et al., 2017; Paivio, 1991). 41 

Within this framework, “concrete” words are experienced directly through senses or actions (e.g., 42 

dog, table) while “abstract” words have meanings dependent on language (e.g., idea, plan).  43 

Together, concreteness and abstractness represent ends of a continuum of “sensory grounding”,  44 

where a given word can be placed along this axis based on the degree to which it can be 45 

experienced directly through one’s senses. Accordingly, each word is assumed to share this 46 

property with other words at a similar position along the axis, irrespective of their meanings. 47 

Theories of “grounded cognition” (Barsalou, 2008; Binder & Desai, 2011) propose that concrete 48 

words benefit from being jointly represented across both sensory and linguistic domains and, as 49 

a result, exhibit more stable representations than abstract words. Recent findings from human 50 

neuroimaging provide support for these theories, demonstrating close topographical and 51 

functional correspondence between representations of sensory and linguistic information (Deniz 52 

et al., 2019; Huth et al., 2016; Popham et al., 2021). In turn, the concreteness of words benefits 53 
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behavior: concrete words are processed faster (Kroll & Merves, 1986; Paivio & Begg, 1971; 54 

Roxbury et al., 2014; Schwanenflugel et al., 1988), are more imageable (Altarriba et al., 1999; 55 

Tuckute et al., 2018), and are more easily recalled than abstract words (Aka et al., 2021; Gorman, 56 

1961; M. Hamilton & Rajaram, 2001; Romani et al., 2008; Walker & Hulme, 1999).   57 

 58 

While studies often highlight population-level commonalities in how people process and represent 59 

concrete versus abstract words, researchers have also identified differences in how individuals 60 

organize and represent concrete versus abstract language (X. Wang & Bi, Yanchao, 2021). 61 

Specifically, concrete words are more similar both across (X. Wang & Bi, Yanchao, 2021) and 62 

within subjects (Musz & Thompson-Schill, 2015) in both their conceptual organization (as 63 

measured behaviorally with a semantic distance task) and neural representations. However, the 64 

extent to which representations of the concrete-abstract axis itself, rather than individual words 65 

along that axis, are stable across experiences and unique to each person remains unclear. On 66 

one hand, representations of individual concrete words may be more stable due to each word’s 67 

unique sensory grounding that stabilizes its own representation and distinguishes it from other 68 

words. On the other hand, the property of concreteness may provide a shared structure that 69 

supports the representation of each individual word, elevating the similarity among all concrete 70 

words as a class despite differences in sensory grounding and word meaning. Together, this 71 

complicates the interpretation of previous findings: across subjects, the low similarity of abstract 72 

word representations may result not only from variability in individual word representations, but 73 

also variability in representing the property of  “abstractness” more generally (Figure 1C). 74 

 75 

One possibility is that representations of abstractness might be highly individualized—in other 76 

words, both unique to the individual and shared across distinct abstract words within that 77 
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individual. Such individual-specific representations would be evidenced by high within-subject 78 

similarity across exposures to different abstract words, despite low across-subject similarity. 79 

Another possibility is that low similarity results from unstable representations of abstractness. In 80 

this case, representations would show low similarity both within and across subjects that could 81 

result from high variability in abstractness across contexts. Yet, without evaluating the reliability 82 

of representations within subjects and across words, the low similarity of abstract word 83 

representations across subjects is difficult to interpret. 84 

 85 

Here, we aimed to understand how the concrete-abstract axis provides a foundation for individual 86 

differences in the neural representation of language. We investigated this question within a large 87 

dataset of subjects who listened to four naturalistic auditory stories during functional magnetic 88 

resonance imaging (fMRI). Unlike many previous investigations that used isolated single-word or 89 

otherwise simplified paradigms (Binder et al., 2005; Fernandino et al., 2022; Friederici et al., 2000; 90 

Musz & Thompson-Schill, 2015; Roxbury et al., 2014; Vignali et al., 2023; X. Wang & Bi, Yanchao, 91 

2021; West & Holcomb, 2000), these data allowed us to characterize neural representations of 92 

the concrete-abstract axis within contextualized speech, as language is used in everyday life (L. 93 

S. Hamilton & Huth, 2020). We tested not only the extent to which neural representations of 94 

concreteness and abstractness are consistent across subjects, but also the degree to which these 95 

representations are reliable within and unique to a given subject across stories. Then, by 96 

leveraging tools from natural language processing, we relate our findings on concreteness and 97 

abstractness to prior work on word meanings by taking sets of similar concepts as a proxy for 98 

repeated words across stories. Specifically, we examined how the organization of words within a 99 

high-dimensional semantic space relates to differential reliability of how concreteness versus 100 

abstractness are represented in the human brain. 101 
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Methods 102 

Participants 103 

 104 

We used a subset of data from the publicly available Narratives dataset (Nastase et al., 2021). 105 

Specifically, we used data from 45 subjects (N=33 female; mean age 23.3 +/- 7.4 years) who 106 

each listened to four auditory stories (“Running from the Bronx”, 8:56 min; “Pie Man (PNI)”, 6:40 107 

min; “I Knew You Were Black”, 13:20 min; “The Man Who Forgot Ray Bradbury”, 13:57 min) 108 

during fMRI scans at the Princeton Neuroscience Institute (Figure 1A). All stories were collected 109 

within the same testing session and each story was collected within a separate run. Across 110 

participants, the order of stories was pseudo-randomized such that “Bronx” and “Pie Man (PNI)” 111 

were always presented in the first half of the session while “Black” and “Forgot” were presented 112 

in the second half of the session. The order of the stories presented within each half of the session 113 

was then randomized, resulting in four possible presentation orders across participants. All 114 

participants completed written informed consent, were screened for MRI safety and reported 115 

fluency in English, having normal hearing, and no history of neurological disorders. The study was 116 

approved by the Princeton University Institutional Review Board. 117 

 118 

MRI data acquisition and preprocessing 119 

 120 

Functional and anatomical images were collected on a 3T Siemens Magnetom Prisma with a 64-121 

channel head coil. Whole-brain images were acquired (48 slices per volume, 2.5mm isotropic 122 

resolution) in an interleaved fashion using a gradient-echo EPI (repetition time (TR) = 1.5s, echo 123 
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time (TE) = 31ms, flip angle (FA) = 67°) with a multiband acceleration factor of 3 and no in-plane 124 

acceleration. A total of 1717 volumes were collected for each participant across four separate 125 

scan runs, where a single story was presented within each run. 126 

 127 

We used preprocessed data provided by Nastase et al., 2021. In brief, data were preprocessed 128 

using fmriprep (Esteban et al., 2019) including co-registration, slice-time correction, and non-129 

linear alignment to the MNI152 template brain. Time-series were detrended with regressors for 130 

motion, white matter, cerebrospinal fluid and smoothed with a 6mm FWHM gaussian kernel. For 131 

more information about data acquisition and preprocessing, please refer to Nastase et al., 2021.  132 

 133 

As an additional preprocessing step, we performed functional alignment on these data using a 134 

shared response model (Chen et al., 2015) as implemented in BrainIAK (Kumar et al., 2021). 135 

Previous work has demonstrated better functional alignment by fitting a SRM within each parcel 136 

(Bazeille et al., 2021). Accordingly, we restricted our analyses to the neocortex and used the 200-137 

parcel Schaefer parcellation (Schaefer et al., 2018) and removed any parcel without at least 75% 138 

coverage across all participants and stories (total parcels removed: 9/200, or 4.5%). Within each 139 

remaining parcel, we then fit a model to capture reliable responses to all stories across 140 

participants in a lower dimensional feature space (number of features = 50). We then inverted the 141 

parcel-wise models to reconstruct the individual voxel-wise time courses for each participant and 142 

each story (Yates et al., 2021). This procedure served as an additional denoising step to improve 143 

the consistency of stimulus-driven spatiotemporal patterns across participants. All analyses were 144 

conducted in volume space and projected to surface space (fsaverage) using nilearn (Abraham 145 

et al., 2014) for visualization purposes only. 146 

 147 
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Stimulus preprocessing 148 

 149 

Each story was originally transcribed and aligned to the audio file using the Gentle forced-150 

alignment algorithm by the authors of Nastase et al., 2021. We applied additional preprocessing 151 

to the transcripts using the Natural Language Toolkit (Bird et al., 2009). First, we obtained parts-152 

of-speech and word lemmas — the base form of a word (e.g., “go” is the lemma for “going”, “gone” 153 

and “went”) — for each word, and excluded stop-words (uninformative, common words) such as 154 

“the”, “a”, and “is”. 155 

 156 

To address our hypotheses, we leveraged an existing corpus of human ratings of word 157 

concreteness (Brysbaert et al., 2014). In this study, online participants rated a total of 40,000 158 

English word lemmas on a 5-point Likert scale from abstract (lower) to concrete (higher). Each 159 

word was rated by at least 25 participants. Participants were instructed to consider a word as 160 

more concrete if it refers to something that exists in reality and can be experienced directly through 161 

senses or actions, and, in contrast, to consider a word as more abstract if its meaning depends 162 

on language and cannot be experienced directly through senses or actions. Henceforth, we use 163 

“concrete-abstract axis” to refer to this general linguistic dimension, and “concreteness” as a 164 

word’s specific position on this axis. 165 

 166 

For each word in each story, we assigned a value of concreteness using the average human 167 

rating for that word’s lemma if it was present in the concreteness corpus (Figure 1B). In addition 168 

to our critical predictor (concreteness), we included three other linguistic properties as controls: 169 

frequency (Brysbaert et al., 2019; Brysbaert & New, 2009), a measure of how often a word occurs 170 
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in language, and two affective properties, valence and arousal (Warriner et al., 2013). Word 171 

frequency was derived objectively by calculating the number of occurrences of a word per million 172 

words (51 million total words), while valence and arousal were derived from human ratings 173 

analogous to the concreteness ratings described above. Previous research investigating word 174 

frequency effects have demonstrated that less frequent words drive stronger neural responses 175 

within the language network (Fiebach et al., 2002; Schuster et al., 2016). A separate set of studies 176 

investigating affect have demonstrated that valence and arousal contribute to representations of 177 

language within areas related to emotion processing and memory (Brooks et al., 2016; Kensinger 178 

& Schacter, 2006). While the selected control properties are not a definitive list, including them 179 

as “competition” allows us to make inferences that are more specific to the concrete-abstract axis. 180 

Our analysis was then constrained to the set of words with a value for any of the four properties 181 

(i.e., the union), resulting in 97.7% of content words sampled on average across stories (2449 182 

words of the possible 2500 content words). We were able to model the majority of these content 183 

words within each linguistic predictor (concreteness: 96.4%, frequency: 97.7%, valence: 83%, 184 

arousal: 83%). Importantly, collinearity between the critical regressor, concreteness, and other 185 

linguistic properties varied, showing a moderate relationship with word frequency and weak 186 

relationships with all other properties (average Pearson’s r across stories: arousal = -0.10; 187 

frequency = -0.30;  valence = -0.05). 188 

 189 

fMRI Analysis 190 

 191 

Modeling representations of word properties 192 

JN
eurosci

 Acce
pted M

an
uscr

ipt



IDIOSYNCRATIC REPRESENTATIONS OF CONCRETENESS 

 193 

For each story and participant, we used a general linear model (GLM) to estimate BOLD 194 

responses for each linguistic property (concreteness, frequency, valence, arousal), plus a low-195 

level auditory feature regressor (loudness: the root mean square of the auditory waveform). We 196 

collectively refer to these linguistic and sensory properties as “word properties”.  197 

 198 

To construct a continuous, amplitude-modulated regressor, each word property was assigned a 199 

value at each timepoint of the story timeseries based on the word(s) spoken at that timepoint. We 200 

then modeled BOLD signal as a function of these regressors using AFNI (Cox, 1996). The model 201 

yields a map of beta values that correspond to responses to each property, where higher and 202 

lower values indicate higher and lower values of a given linguistic property (e.g., higher = more 203 

concrete, lower = more abstract). As all word properties were included in the same model, the 204 

resulting beta values represent the BOLD response to a given property while controlling for all 205 

other properties.  206 

 207 

Using the outputs from these models, we first examined group-level univariate responses to each 208 

word property using a linear-mixed effects model. At each voxel, the model predicts BOLD activity 209 

from the fixed effects of each property plus the random effects of subject and story. The model 210 

therefore yields a map of beta values that describes consistent neural responses to each property 211 

across stories and subjects. All voxel-wise results are shown following correction for multiple 212 

comparisons (qFDR < 0.05). 213 

 214 
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Evaluating the reliability of representations of the concrete-abstract axis and other word 215 

properties 216 

 217 

To understand whether word properties elicit reliable representations during story listening (Figure 218 

1C), we examined the within- and across-subject multivariate pattern similarity of evoked 219 

responses for each property across stories. We first divided the cortex into 200 parcels using the 220 

Schaefer parcellation (Schaefer et al., 2018). Then, within each parcel, we correlated the 221 

multivoxel pattern of beta values between all pairs of participants, repeating this process for each 222 

unique pair of stories (six total pairs). Lastly, we averaged across all story-pair matrices to obtain 223 

a subject similarity matrix for each parcel (denoted as M within the following equations). We 224 

repeated this procedure for each property to understand the similarity of neural representations 225 

across stories both within- and across-subjects. See Figure 1D for a schematic of this analysis. 226 

 227 

We evaluated two multivariate signatures of these neural representations (Figure 1D). Our first 228 

method, reliability, assesses the similarity of a subject’s representations to themselves across 229 

stories compared to the similarity of their representations to those of other subjects. Specifically, 230 

reliability is calculated as the difference between the similarity of a subject to themselves (within-231 

subject similarity) and the average pairwise similarity of a subject to all other subjects (across-232 

subject similarity). 233 

 234 

 235 
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Our second method, identifiability, measures how unique representations are to each subject. A 236 

subject is said to be identifiable based on their representations when, across stories, similarity of 237 

a subject to themselves is higher than similarity to all other participants of the group. For each 238 

parcel, we calculate identifiability as fingerprinting accuracy: the average number of participants 239 

identifiable based on their neural representations (Finn et al., 2015).  240 

 241 

For both reliability and identifiability analyses, statistical significance was evaluated via 242 

permutation testing. Specifically, for each parcel, we permuted the rows of the subject similarity 243 

matrix and recalculated reliability and identifiability values. This process was repeated 10,000 244 

times and observed values were tested against this null distribution. Resulting p-values for each 245 

signature were corrected for multiple-comparisons across 200 parcels using the Benjamini-246 

Hochberg method (qFDR < 0.05). To evaluate reliability and identifiability at a whole-brain level, for 247 

each signature, we used a linear-mixed effects model to predict reliability/identifiability from the 248 

fixed-effect of word property while controlling for the random effect of parcel in both models and 249 

a random effect of subject within the reliability model. We tested for significant differences 250 

between word properties by conducting pairwise statistical tests between model fits to each 251 

property.  252 

 253 

To understand what was driving observed reliability — i.e., high within-subject consistency, low 254 

across-subject similarity, or both — we compared within-subject similarity to across-subject 255 

similarity. Specifically, we calculated across-subject similarity in two ways: 1) in the same stories 256 

and 2) across different stories. For each word property, we used one-sample tests to assess 257 
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significance of similarity of representations for each form of similarity. Then, we used a linear-258 

mixed effects model to evaluate whether within-subject similarity was higher than both forms of 259 

across-subject similarity. All tests were two-tailed, tested at alpha p < 0.05, and corrected for 260 

multiple-comparisons using FDR correction. 261 

 262 

Disentangling the reliability of representations of concreteness versus abstractness  263 

 264 

We next aimed to understand whether concreteness and abstractness differentially contribute to 265 

the reliability of neural representations of the concrete-abstract axis. To this end, within each 266 

story, we limited our analysis to nouns (as verbs were more prevalent at the abstract end) and 267 

dichotomized the concrete-abstract axis by selecting the top 30% of concrete and top 30% of 268 

abstract words (Figure 4A). Specifically, we asked if and where representations of concreteness 269 

are more reliable than representations of abstractness or vice versa. 270 

 271 

We used a GLM to estimate separate BOLD response patterns for concreteness and abstractness 272 

(using regressors defined based on the top 30% of words at each end). Within this model, we 273 

specified concreteness and abstractness as event regressors, discarding the amplitude 274 

component and treating all words of a given property as contributing equally to the model of BOLD 275 

response. The regressors for concreteness and abstractness each contained a total of 187 words 276 

aggregated across stories, resulting in a total of 374 words modeled across stories (black: 94 277 

words; bronx: 92 words; piemanpni: 68 words; forgot: 120 words). We also included two 278 

amplitude-modulated regressors, word frequency and loudness, to control for differences in low-279 

level linguistic and sensory features. We then repeated our analysis of reliability and identifiability 280 

(described above) on the beta maps of concreteness and abstractness separately.  281 
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 282 

For each parcel, we contrasted the reliability of concreteness and abstractness within each 283 

subject by applying Fisher’s z-transformation and taking the difference between the reliability 284 

scores (concrete minus abstract), limiting our analysis to parcels that showed significant reliability 285 

for either concreteness or abstractness. Then, within each parcel, we conducted paired t-tests to 286 

identify parcels that significantly differed in their reliability of concreteness and abstractness 287 

representations. All tests were two-tailed, tested at alpha p < 0.05, and corrected for multiple-288 

comparisons using FDR correction. 289 

 290 

Evaluating the stability of representations of concrete versus abstract concept clusters  291 

 292 

In light of the finding that representations of concreteness are more reliable than those of 293 

abstractness (cf. Figure 4B), we asked whether this higher reliability is driven by closer and more 294 

stable semantic relationships between words at the concrete end of the spectrum. To define 295 

semantic relationships between words, we used a natural language processing model (GloVe; 296 

(Pennington et al., 2014) to embed each word in both the top 30% concrete and top 30% abstract 297 

word sets, aggregated across stories, within a high-dimensional semantic space (Figure 5A). We 298 

then applied spectral clustering (Shi & Malik, 2000) over the concrete and abstract word 299 

embeddings to obtain clusters for each end of the spectrum (k=3 each for the concrete and 300 

abstract ends, so six total) composed of semantically similar words, which we refer to as “concept 301 

clusters”. While we selected k=3 clusters because this value of k yielded the most balanced 302 

number of words in each cluster, similar results were obtained at both k=2 and k=4 clusters. These 303 

clusters grouped concrete and abstract words into sets of related concepts — such as a food-304 

related concrete cluster containing the words “bread” and “cheese” — that were visually distinct 305 
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when projected into a 2-dimensional space using UMAP (Figure 5B(McInnes et al., 2020). 306 

Importantly, words within each concept cluster could come from within the same story or from 307 

different stories. 308 

 309 

In addition to visualizing the qualitative organization of concept clusters, we also formally tested 310 

the semantic similarity of words in the same or in different clusters, within and between ends of 311 

the concrete-abstract axis. Importantly, because the clustering itself was done on semantic 312 

distances, we expect that distances will be lower between words in the same versus different 313 

clusters, but this analysis also lets us quantify if and how semantic spread across clusters is 314 

greater at one end of the concrete-abstract axis than the other. Specifically, we calculated the 315 

cosine similarity between all pairs of words embedded within the semantic space. We then 316 

grouped these pairwise similarity values into the following categories: a) pairs of words within the 317 

same cluster, b) pairs of words in different clusters at the same end of the concrete-abstract axis 318 

(i.e., either concrete or abstract), and c) pairs of words at different ends of the concrete-abstract 319 

axis, which were (by definition) in different clusters. To compare these groups of similarity values, 320 

we used a linear-mixed effects model to evaluate how end of the property spectrum (concrete vs. 321 

abstract), cluster membership (within vs. between), and the interaction between these two 322 

features relate to the semantic similarity of cluster words while controlling for the random effect of 323 

word. To help interpret any resulting differences, we also conducted follow-up pairwise statistical 324 

tests. All tests were two-tailed, tested at alpha p < 0.05, and corrected for multiple-comparisons 325 

using FDR correction.  326 

 327 

Next, we used a GLM to estimate BOLD responses to words within each concept cluster and 328 

evaluated both within- and across-subject similarity of these neural concept-cluster 329 
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representations across stories. Similar to our analysis of semantic space, we calculated a) the 330 

similarity of neural representations of the same cluster across stories, b) the similarity of neural 331 

representations of different clusters at the same end of the spectrum (e.g., concrete clusters to 332 

other concrete clusters), and c) the similarity of neural representations between concrete clusters 333 

and abstract clusters. Crucially, all analyses of cluster similarity, both within- and across-subjects, 334 

are calculated as the similarity of clusters across stories; this allowed us to evaluate the stability 335 

and uniqueness of concept-cluster representations across distinct presentations and contexts.  336 

 337 

Using two separate linear-mixed effects models, we examined how end of the property spectrum 338 

(concrete vs. abstract), cluster membership (within vs. between), and specific cluster relationship 339 

(e.g., within-concrete, between-concrete, etc.) differentially contribute to whole-brain similarity of 340 

neural representations while controlling for random effects of subject and parcel. Our first model 341 

predicts similarity from the fixed-effects of end of the property spectrum and cluster membership, 342 

and evaluates their main effects as well as their interaction. Then, in a separate model, we predict 343 

similarity from the fixed-effect of specific cluster relationship, specifying each cluster relationship 344 

as a separate level of the fixed effect. Using this second model, we tested for significant 345 

differences between cluster relationships by conducting pairwise statistical tests. All tests were 346 

two-tailed, tested at alpha p < 0.05, and corrected for multiple-comparisons using FDR correction. 347 

Results 348 

We aimed to understand how neural representations of the concrete-abstract axis vary within 349 

individuals and across the population during naturalistic story listening. Using a dataset of 350 

subjects (N=45) that listened to four stories each, we replicated previous findings that univariate 351 

neural responses to the concrete-abstract axis show group-level consistency. Complementing 352 

this consistency, we also found idiosyncratic multivariate representations of this axis that were 353 
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unique to individuals and stable across stories, allowing us to identify subjects with a high degree 354 

of accuracy. Furthermore, by placing words within a high-dimensional semantic space, we 355 

demonstrated that neural representations of concrete words are particularly stable and 356 

stereotyped, and that this consistency primarily drives the reliability of the concrete-abstract axis, 357 

while representations of abstract words are more variable both within and across subjects. 358 

 359 

Consistent group-level activations to the concrete-abstract axis 360 

 361 

We first sought to replicate prior work demonstrating group-level consistency of univariate activity 362 

to the concrete-abstract axis. For each subject and story, we modeled brain activity as a function 363 

of the time-varying concreteness level of its content (as given by word-level norms provided by a 364 

separate set of human raters). Our model also included time-varying regressors for other linguistic 365 

properties — namely, frequency, valence, and arousal — plus loudness, a low-level sensory 366 

control.  367 

 368 

All properties, both sensory and linguistic, demonstrated univariate neural responses that were 369 

consistent across both subjects and stories (Figure 2; qFDR < 0.05). For example, as expected, 370 

loudness evoked responses in bilateral primary auditory cortex. Critically, the concrete-abstract 371 

axis evoked neural responses across a wide swath of cortex: more concrete words drove higher 372 

responses in regions including bilateral angular gyrus, bilateral parahippocampal cortex, and 373 

bilateral inferior frontal gyrus, while more abstract words drove responses in regions such as 374 

bilateral superior temporal gyrus and bilateral anterior temporal lobe. These results align with 375 

previous research that has reported similar cortical regions engaged in processing concrete and 376 

abstract concepts (Montefinese, 2019; J. Wang et al., 2010). Importantly, all linguistic properties 377 
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exhibited responses that agree with prior research: frequency modulation in the left inferior frontal 378 

gyrus (Schuster et al., 2016), valence in the right temporoparietal junction (Tamir et al., 2016), 379 

and arousal in posterior cingulate (Maddock & Buonocore, 1997) and ventromedial prefrontal 380 

cortex (Kensinger & Schacter, 2006). 381 

 382 

Representations of the concrete-abstract axis are reliable within individuals 383 

 384 

Having shown that the concrete-abstract axis drives consistent univariate activity at the group 385 

level, we next investigated the stability of multivariate representations of this axis, as well other 386 

word properties, across stories. Representations were operationalized as multivoxel patterns of 387 

activity within each cortical parcel evoked by a given property in a given story. Specifically, we 388 

compared representations both within and across individuals, allowing us to understand the extent 389 

to which representations of these common linguistic dimensions are shared versus individualized.  390 

 391 

We found that representations of all word properties except valence exhibited individual reliability 392 

across stories in at least some brain regions (Figure 3A; n = 10,000 permutations, all qFDR < 0.05), 393 

where reliability was defined as the difference between within-subject and average across-subject 394 

similarity. Importantly, while the low-level sensory property of loudness showed the highest 395 

average reliability across parcels (r = 0.11), the concrete-abstract axis showed the second highest 396 

average reliability (r = 0.09) and was significantly more reliable than all other linguistic (i.e., non-397 

sensory) properties (frequency: r = 0.04, β = 0.01, t(42967) = 8.71; valence: r = -0.002, β = 0.05, 398 

t(42967) = 41.83; arousal: r = 0.02, β = 0.03, t(42967) = 23.74; all ps < 0.001).  399 

 400 
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We next disentangled the separate contributions of within- and across-subject similarity in driving 401 

reliability of individual representations. In theory, high individual reliability of representations 402 

across stories could result from 1) highly similar representations within subjects, 2) highly 403 

dissimilar representations across subjects, or 3) a combination of the two. Accordingly, for each 404 

word property, we calculated the within- and across-subject similarity of representations. 405 

Specifically, we calculated the similarity of across-subject representations both within the same 406 

stories and across different stories. We compared the similarity of within-subject representations 407 

to both forms of across-subject similarity. Importantly, this comparison ensured that any observed 408 

differences in reliability stemmed from individualized representations (within-subject similarity) 409 

above and beyond characteristics of the presented stories. 410 

 411 

For all word properties with significant reliability (i.e., all except valence), participants’ 412 

representations were significantly similar to themselves across different stories (Figure 3B; one-413 

sample t-tests, all ps < 0.001). Critically, participants’ were significantly more similar to themselves 414 

than to other participants, even when across-subject representations were compared within the 415 

same story (LME range of β values = -0.01 – 0.03, all ps < 0.001).  416 

 417 

We then examined whether there was a relationship between within- and across-subject similarity 418 

of word property representations. By correlating within- and across-subject similarity values 419 

across parcels, we found that brain areas with word property representations that were more 420 

similar within subjects also showed higher similarity in representations across subjects (loudness  421 

(r = 0.874), concrete-abstract (r = 0.784), frequency (r = 0.797), valence (r = 0.428), arousal (r = 422 

0.599); all ps < 0.001). This finding recapitulates a seemingly paradoxical phenomenon previously 423 
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shown in functional connectivity fingerprinting: brain states that make individuals more similar to 424 

others also make them more similar to themselves (Finn et al., 2017).  425 

 426 

Individuals are identifiable from their representations of the concrete-427 

abstract axis 428 

 429 

The previous analyses revealed that individuals’ representations of the concrete-abstract axis are 430 

stable across stories, but how unique are these representations? High reliability does not 431 

necessarily imply uniqueness: low average across-subject similarity could be due to high 432 

variability in across-subject similarity. In other words, certain pairs of subjects may have highly 433 

similar representations of the concrete-abstract axis, despite most of the group exhibiting low 434 

similarity. To test the extent to which word property representations are unique to each individual, 435 

we evaluated our ability to identify subjects from their representations of each word property.   436 

 437 

Across cortical parcels, we were able to identify subjects from representations of both sensory 438 

response (loudness) and all four linguistic properties across much of the brain (Figure 3C; null = 439 

10,000 permutations, all qFDR < 0.05). Of note, the average identification rates across cortical 440 

parcels were low in an absolute sense but still significantly above chance (chance = 2.22%; Figure 441 

3D). Overall, representations of loudness provided the best ability to identify subjects (22.1%), 442 

demonstrating significantly higher identification rates, on average, than the concrete-abstract axis 443 

(16.5%; β = 10.41, t(948) = 14.77, p < 0.001). However, representations of the concrete-abstract 444 

axis enabled significantly higher identification accuracy than representations of other linguistic 445 
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properties (frequency: 8.8%, β = 2.9, t(948) = 4.11; valence: 4.4%, β = 7.24, t(948) = 10.27; 446 

arousal: 6.6%, β = 5.08, t(948) = 7.2; all ps < 0.001).  447 

 448 

We then applied a winner-takes-all approach to identifiability maps to understand the cortical 449 

parcels where concrete-abstract axis representations showed the highest accuracy out of all word 450 

properties. We found that the concrete-abstract axis enabled the highest identification of 451 

subjects—even higher than loudness—within regions including left anterior temporal lobe, left 452 

inferior frontal gyrus, and bilateral retrosplenial cortex (RSC). These results dovetail with previous 453 

studies that have shown that areas within the left-lateralized language network and multimodal 454 

cortex are important in representing concrete and abstract concepts (Binder et al., 2005; Roxbury 455 

et al., 2014; J. Wang et al., 2010; Zhang et al., 2020).  456 

 457 

Representations of concreteness are more reliable than representations of 458 

abstractness and drive individual identifiability 459 

 460 

Thus far, we have shown that representations of the concrete-abstract axis are reliable within and 461 

unique to individual subjects across experiences. Yet it remains unclear whether both ends of this 462 

continuum – concreteness and abstractness – contribute equally this reliability and uniqueness.   463 

 464 

On one hand, representations of concreteness may be more reliable than those of abstractness 465 

due to greater associations with sensory experience. On the other hand, representations of 466 

abstractness may be more idiosyncratic, as uniquely language-based representations could 467 

depend more heavily on individual experience to create meaning. While prior work suggests that 468 
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representations of abstract words exhibit lower similarity across individuals than concrete words, 469 

disentangling the source of this difference requires 1) evaluating the stability of concreteness and 470 

abstractness as classes, and 2) assessing similarity within the same individual across 471 

experiences.  472 

 473 

To understand the differential contributions of concreteness and abstractness in driving reliability, 474 

we dichotomized the continuous concrete-abstract axis and estimated reliability separately for 475 

each end of the spectrum. Specifically, we first limited our analysis to nouns to avoid confounds 476 

associated with different parts of speech, as verbs are more prevalent at the abstract end of the 477 

axis. We then separated the top 30% of words at each end of the concrete-abstract axis into two 478 

classes representing “concreteness” and “abstractness”.  Lastly, we used a GLM to estimate 479 

separate BOLD response patterns for “concreteness” and “abstractness”. 480 

 481 

We observed that representations of concreteness and abstractness each demonstrated 482 

significant reliability across stories in several brain regions (Figure 4B; null = 10,000 permutations, 483 

both qFDR < 0.05). By contrasting the reliability maps, we found that many cortical parcels (36%, 484 

or 72/200) exhibited more reliable responses to concreteness than abstractness. On the other 485 

hand, no parcels showed greater reliability for representations of abstractness over concreteness. 486 

We then repeated our identifiability analysis (see Methods) to understand whether these 487 

representations of concreteness and abstractness were unique enough to discriminate individual 488 

subjects from one another. Across the majority of parcels, we were able to identify individuals 489 

based on their representations of both concreteness and abstractness significantly above chance 490 

(Figure 4C; null = 10,000 permutations, both qFDR < 0.05). However, at a whole-brain level, 491 

representations of concreteness showed a significantly higher rate of identification compared to 492 
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representations of abstractness (Figure 4D; concreteness: 14%; abstractness: 6.4%; β = 3.83, 493 

t(190) = 12.79; p < 0.001). Together, these findings suggest that representations of concreteness 494 

primarily drive reliable responses of the concrete-abstract axis and are more individualized than 495 

representations of abstractness, extending previous, population-level findings to individual 496 

patterns of neural responses (Binder et al., 2005; Roxbury et al., 2014; Tong et al., 2022; X. Wang 497 

& Bi, Yanchao, 2021; West & Holcomb, 2000).  498 

 499 

Concrete concepts share an underlying representational signature that 500 

drives reliability of representations across experiences 501 

 502 

Why might neural representations of the concrete end of the spectrum be more reliable than 503 

representations of the abstract end? One potential explanation is that concrete words share the 504 

property of imageability, which carries its own representational signature that undergirds the 505 

representations of individual concrete words despite their differences in meaning. This 506 

representational signature could serve to stabilize the representations of individual concrete 507 

words across different contexts and in relation to other concrete words. While the naturalistic 508 

nature of these stimuli means that we did not necessarily have repeated presentation of the same 509 

word(s) across stories, we can use natural language processing (NLP) techniques to group words 510 

into clusters of semantically related words and use these clusters to help understand why 511 

representations of concreteness are more reliable than those of abstractness, even when 512 

generalizing over individual words and concepts.  513 

 514 
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Numerous recent studies have demonstrated parallels in language representation between 515 

humans and NLP models (Caucheteux & King, 2022; Goldstein et al., 2022; Huth et al., 2016; 516 

Schrimpf et al., 2021; Tuckute et al., 2024). Here, we used a word-embedding NLP model (GloVe; 517 

(Pennington et al., 2014) to understand how the semantic relationships among concrete and 518 

abstract words relate to the reliability of representations of the concrete-abstract axis. Specifically, 519 

we embedded concrete and abstract words within a high-dimensional semantic space and 520 

clustered words based on their semantic similarity. We then analyzed the similarity of these 521 

“concept clusters” in semantic space and, analogously, the similarity of neural responses to each 522 

cluster across stories using linear mixed-effects models (see Methods).  523 

 524 

The semantic-embedding analysis confirmed that words within the same concept cluster were 525 

more similar to each other than to words in different clusters (Figure 5C; , β = 0.03, t(610) = 14.71, 526 

p < 0.001), a pattern of results consistent across both concrete and abstract clusters (pairwise 527 

comparisons; concrete: t(306) = 10.76; abstract: t(306) = 10.03; both ps < 0.001). This was 528 

expected given that the clustering was performed on semantic distances, but still served as a 529 

useful check on the appropriateness of the cluster solution. But we also observed a somewhat 530 

puzzling result: within semantic space, abstract clusters were generally more similar to one 531 

another than concrete clusters were to one another (β = 0.03, t(610) = 5.87, p < 0.001). This 532 

finding was particularly surprising given the results from the previous analysis (cf. Figure 4B) that 533 

showed that neural representations of concreteness are more reliable than representations of 534 

abstractness. Why might the concrete end of the spectrum, which encompasses more variability 535 

in (i.e., spans more of) semantic space, show less variability in its neural representations?  536 

 537 
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We next turned to analyze within-subject neural representations of concrete and abstract concept 538 

clusters. Echoing the results in semantic space, representations of words within the same cluster 539 

were more similar across stories than representations of words in different clusters (Figure 5D; β 540 

= 0.007, t(34373) = 20.04, p < 0.001), and this was true for both the concrete and abstract ends 541 

of the spectrum (concrete z = 4.36, abstract z = 23.99,  both ps < 0.001). In contrast to the 542 

similarity of clusters in semantic space (Figure 5C), neural representations of concrete clusters 543 

exhibited greater similarity than abstract clusters regardless of semantic distance (same or 544 

different clusters; β = 0.01, t(34373) = 29.45, p < 0.001; Figure 5D).  545 

 546 

Critically, there was also an interaction such that the similarity advantage for same- over different-547 

cluster representation was smaller for concrete clusters than for abstract clusters (β = -0.005, 548 

t(34373) = -13.88, p < 0.001). Strikingly, neural representations of different concrete clusters were 549 

more similar within subjects across stories than neural representations of the same abstract 550 

cluster (Figure 5D; mean difference = 0.007, z = 7.12, p < 0.001). Furthermore, this pattern of 551 

results persisted when analyzing similarity across subjects (within > across: β = 0.002, t(34373) 552 

= 24.11; concrete > abstract: β = 0.001, t(34373) = 17.07; interaction: β = -0.001, t(34373) = -553 

13.27; all ps < 0.001; data not shown), suggesting that a consistent principle drives how 554 

concreteness is represented across similar words, within individuals and across the population.  555 

 556 

Considered together, neural representations of semantically similar concrete words were more 557 

alike than those of semantically similar abstract words, despite concrete words spanning greater 558 

distances within semantic space than abstract words. These divergent results between the NLP 559 

model and neural data suggest that concrete words share a representational signature beyond 560 
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linguistic representations due to sensory associations that could stem from integrating visual 561 

information into the neural representations. 562 

Discussion 563 

Word meanings vary across both people and contexts, often informed by conceptual associations 564 

specific to the individual as well as different situations in which the word is used. What linguistic 565 

properties provide a stable foundation for conceptual knowledge while simultaneously supporting 566 

unique, individual experience? Here, we found that the concrete-abstract axis provides a basis 567 

for both population stability and individual variability in the representation of natural language.  568 

 569 

Many studies have demonstrated that while both concrete and abstract words evoke responses 570 

within the language network (Binder et al., 2005; Del Maschio et al., 2021; Friederici et al., 2000; 571 

Moseley & Pulvermüller, 2014), concrete words exhibit stronger and longer-lasting responses 572 

(Barber et al., 2013; Vignali et al., 2023; West & Holcomb, 2000) and also engage multimodal 573 

cortices, such as bilateral angular gyrus, posterior cingulate, and precuneus, more than abstract 574 

words (Binder et al., 2005; Roxbury et al., 2014; Tang et al., 2021; J. Wang et al., 2010; Zhang et 575 

al., 2020). In our study, we assessed whether reliability exists uniformly across the concrete-576 

abstract axis, enabling us to understand if previously observed variability in abstract word 577 

representations can be explained by variability in representations of abstractness itself. We found 578 

reliable representations of the concrete-abstract axis within regions related to the language 579 

network and within multimodal cortex that were unique to individual subjects across diverse, 580 

naturalistic stories. Critically, representations of the concrete-abstract axis were more reliable 581 

than representations of other linguistic properties (i.e., frequency, valence, arousal), and this 582 

effect was driven primarily by the stable representations of the concrete end of the axis. Together, 583 

our results suggest that word representations are stabilized by consistent representations of 584 
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concreteness more so than abstractness, potentially due to the engagement of multimodal areas 585 

known to integrate sensory and linguistic information. 586 

 587 

Traditionally, neural representations of language have been probed by presenting participants 588 

with single words, sentences, and short paragraphs (Bookheimer, 2002; Hagoort, 2019). These 589 

studies have revealed neural territory specific to language (Fedorenko et al., 2011; Malik-590 

Moraleda et al., 2022) that closely interacts with other networks involved in cognitive control and 591 

theory of mind (Fedorenko & Thompson-Schill, 2014; Paunov et al., 2019, 2022). In contrast to 592 

these carefully controlled experiments, everyday language is dynamic and contextualized, such 593 

that the meanings of words and sentences are informed by larger narrative structure (L. S. 594 

Hamilton & Huth, 2020; Willems et al., 2020). It is therefore crucial to evaluate the degree to which 595 

findings of carefully controlled studies extend to naturalistic language perception (Nastase et al., 596 

2020). Within the present study, participants were presented with naturalistic auditory narratives 597 

representative of how language is used in day-to-day life. Importantly, we found that 598 

representations of abstractness, as well as clusters of related abstract words, were more variable 599 

both within and across subjects than representations of concrete words.  600 

 601 

The finding of higher across-subject variability for abstractness aligns with another recent study 602 

that used a single-word paradigm to study abstract words (X. Wang & Bi, Yanchao, 2021); the 603 

authors of that study interpreted this heightened variability as reflecting individual differences in 604 

meaning of abstract words in particular. However, the appeal to individual differences implies a 605 

stability of representations within the same subject over time, which was not tested. Our study 606 

differs from this previous work in two ways: first, we examined neural representations to the 607 

concrete-abstract axis across words within distinct, naturalistic stories, and second, we evaluated 608 
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the reliability of representations within subjects, across stories to understand if abstractness is 609 

idiosyncratically represented. We found that compared to representations of concreteness, 610 

representations of abstractness were more variable not only across subjects, but also within the 611 

same individual across distinct experiences. This suggests that variability in abstract words stems 612 

less from individual differences in meaning and more from a general instability of representations 613 

of abstractness.   614 

 615 

Recent developments in natural language processing (NLP) models have provided researchers 616 

with tools to better investigate how the human brain organizes and processes natural language 617 

(Caucheteux & King, 2022; Goldstein et al., 2022; Huth et al., 2016; Schrimpf et al., 2021; Tuckute 618 

et al., 2024). These computational models not only capture semantic relationships between 619 

words, but also contain rich knowledge regarding how words relate within various contexts (Erk, 620 

2012). Importantly, the contextual relationships between concrete words — that a fish and a whale 621 

may be semantically similar in terms of “wetness” but different in terms of “size” — closely 622 

correspond to human judgements of the same categories (Grand et al., 2022). Yet, within our 623 

study, we found that clusters of concrete words were less similar than clusters of abstract words 624 

within an NLP model but more similar in the human brain. This dissociation supports theories of 625 

grounded cognition that suggest representations of concreteness carry additional information 626 

beyond pure linguistic representation (Altarriba et al., 1999; Tuckute et al., 2018). Indeed, recent 627 

computational work has demonstrated that visual grounding is essential for linguistic 628 

representations to capture human ratings of the concrete-abstract axis (Zhang et al., 2021). While 629 

prior work has revealed subsets of abstract words that also exhibit sensory associations (Barsalou 630 

& Wiemer-Hastings, 2005; Ghio et al., 2013; Kiefer & Harpaintner, 2020), the lower similarity of 631 

abstract words even within a concept cluster suggests that the representational signature of 632 

sensory experience may be weaker or not present for abstract words. Together, these findings 633 
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suggest that concrete words, but not abstract words, carry a shared signature of sensory 634 

grounding that stabilizes their neural representations both within and across subjects.  635 

 636 

Though our work aligns with and extends past work on the concrete-abstract axis, it has some 637 

limitations. First, it is possible that we have underestimated the extent to which neural 638 

representations of the other properties (valence, arousal, frequency) are also idiosyncratic. In the 639 

current study, we leveraged pre-existing human ratings of these properties, but these behavioral 640 

ratings were collected by presenting participants with individual words out of context. Similarly, 641 

we leveraged an NLP model that does not incorporate contextual information into the word-level 642 

representations. Some of these other properties, especially valence and arousal, may be more 643 

context-dependent and require ratings specific to a given story or individual to understand the 644 

idiosyncrasies in neural representations. In addition, the moderate negative relationship between 645 

the concrete-abstract axis and word frequency in our dataset also leaves open the possibility that 646 

some effects attributed to concreteness may be shared with (inverse) frequency. Second, due to 647 

the diversity of content across the auditory narratives, we were limited in our ability to compare 648 

representations of the same words across stories. We addressed this by comparing the neural 649 

representations of clusters of similar words across stories, extending prior work on single words 650 

to the organization of broader concepts in semantic space. Future work could select stories that 651 

contain the same words but vary in narrative content to understand the stability of both specific 652 

words and semantic organization more generally across experiences. 653 

 654 

In sum, our work establishes the concrete-abstract axis as a critical dimension for promoting both 655 

shared and individualized representations of language. In particular, these findings disentangle 656 

the sources of individual variability of concrete and abstract word representation and reveal a 657 
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representational signature of sensory experience specific to concrete words that boosts their 658 

representational stability. Our results underscore the importance of considering within-subject 659 

variability when identifying underlying drivers of common versus idiosyncratic processing of 660 

natural language.  661 
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Figure 1. Experimental methods. (a) 45 subjects listened to four auditory stories during fMRI 943 
scanning (Nastase et al., 2021). (b) Human ratings were used to assign a continuous value of 944 
concreteness (i.e., position along the concrete-abstract axis) for as many words as possible within 945 
each story. This process was repeated with other linguistic properties including frequency, 946 
valence, and arousal (not shown). (c) Any apparent variation across subjects in neural 947 
representations of word properties could stem from two possible underlying patterns: neural 948 
representations could be reliably idiosyncratic within subjects, evidenced by high similarity of 949 
representations within the same subject across distinct experiences (here, stories), or these 950 
representations could be unstable both within and across subjects, evidenced by variability within 951 
the same subject across stories. (d) Example procedure for calculating reliability and identifiability 952 
for one word property. For each story, voxel-wise beta values were estimated within a generalized 953 
linear model. Then, within each of 200 parcels (Schaefer parcellation), beta values were 954 
correlated between all subjects for each pair of stories (6 unique pairs). These story similarity 955 
matrices were then averaged and used to estimate two indices of stable, individualized neural 956 
representations: 1) reliability, defined as the difference between within-subject and average 957 
across-subject similarity, and 2) identifiability, defined as the fingerprinting accuracy of 958 
discriminating one subject from all other subjects based on their neural representations. This 959 
process was repeated for each word property. 960 

 961 

Figure 2. Group-level univariate activation to sensory and linguistic properties. Across 962 
stories and subjects, multiple regions exhibited significant activation to the intensity of sound and 963 
word-level linguistic properties including the concrete-abstract axis, frequency, valence, and 964 
arousal. Results shown are from a single linear mixed-effects model containing fixed effects for 965 
all properties plus random effects for story and subject. Results are displayed at a voxel-wise 966 
threshold of qFDR < 0.05. 967 

 968 

Figure 3. Within- and across-subject reliability of neural representations of word 969 
properties. We compared representations of word properties across four naturalistic stories both 970 
within and across subjects. (a) Across stories, all properties except valence exhibited high within-971 
subject reliability across much of cortex (qFDR < 0.05, null = 10,000 permutations). While a simple 972 
sensory property, loudness, exhibited the highest reliability, representations of the concrete-973 
abstract axis were more reliable than other linguistic properties (frequency, valence, arousal). (b) 974 
At the whole-brain level, across all properties, within-subject across-story similarity was 975 
consistently higher than across-subject similarity, even when comparing representations across 976 
subjects within the same stories. Each data point represents average similarity value in one parcel 977 
of the Schaefer parcellation (200 total). (c) Representations of all properties enabled accurate 978 
identification of subjects across much of cortex. All plots are thresholded at chance (2.22%). (d) 979 
Out of tested linguistic properties, subjects were most identifiable from their representations of 980 
the concrete-abstract axis. Each dot indicates identifiability within one parcel. * p < 0.05; ** p < 981 
0.01; *** p < 0.001; n.s. p > 0.05. 982 

 983 
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Figure 4. Within-subject reliability of neural representations of concrete and abstract 984 
words. (a) We selected concrete and abstract words as the top/bottom 30% of nouns within the 985 
concrete-abstract axis and estimated neural responses to each set of words in a second GLM 986 
analysis. (b) While both concreteness and abstractness exhibited reliable representations within 987 
subjects across stories, representations of concreteness were more reliable than representations 988 
of abstractness across much of cortex (qFDR < 0.05, null = 10,000 permutations). (c, d) 989 
Representations of concreteness provided a greater ability to identify subjects than 990 
representations of abstractness (qFDR < 0.05, null = 10,000 permutations). 991 

 992 

Figure 5. Stability of concrete and abstract concept cluster representations within and 993 
across subjects. (a) We clustered the top 30% concrete and top 30% abstract words within a 994 
high-dimensional semantic space (GloVe). We then estimated voxel-wise beta values for each of 995 
six clusters (3 concrete, 3 abstract) within each subject and story. Next, within each parcel (200 996 
total), we correlated beta values between all sets of clusters across stories and averaged the 997 
across-story similarity of clusters. (b) Visualization of concept clusters within a 2-dimensional 998 
projection using UMAP, plus example words from each cluster. (c) Within semantic space, words 999 
within abstract clusters were more similar (i.e., less distant) than words within concrete clusters. 1000 
Each dot represents the average similarity of a given word to other words within a given 1001 
comparison. In contrast, (d) within-subject neural representations of concrete clusters were more 1002 
similar across stories than representations of abstract clusters. Each dot indicates the average 1003 
similarity of one subject’s concept cluster representations within a given comparison. * p < 0.05; 1004 
** p < 0.01; *** p < 0.001; n.s. p > 0.05. 1005 
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